Ada and C4++
in Education

Ray Toal

Loyola Marymount University
Los Angeles

November 10, 1994

Outline

e Introductory Remarks

e The Software Engineer

e The University

e Programming Languages
e Ada before C+-+

e OO7

e Language Usage at LMU
e Ada Experience at LMU

e Summary

What This Talk is About

e The role of the university in educating com-
puter scientists and software engineers

e What software engineers need to know
e The use of Ada and C++ in the curriculum

e Ada and C++4 language features that help
(hinder) the development of software skills

e Ada as a first language

e Provoking discussion

What This Talk is NOT About

e The history of Ada and C++
e An overview of Ada and C++

e Which universities use which languages (ask
Richard J. Reid)

e The marketing of Ada and C++
e Slamming C+-+

e Language warfare

The Competent Software Engineer

Constructs systems whose

e logical design (nearly) exactly mirrors real-

world objects and events

e physical design exhibits clear separation of

concerns and is resilient to change

and can visualize the four dimensions of system

design
LOGICAL PHYSICAL
STATIC Class Module
DYNAMIC | Object Task

Roles of the University

e To “educate” computer scientists and soft-
ware engineers

e To deal effectively with the difficult task of
teaching students to develop skills and in-
tuition required in megaprogramming

e To enhance students’ creative thinking skills

e To expose students to a wide variety of “view-
points” (or paradigms)

Languages and Teaching

e Industry dominated by imperative languages
such as Fortran, C, C++ and Ada

e Some niches for LISP and SQL

e Some researchers allowed pleasure of working

with ML, Prolog, APL, ...

e Visual languages on the rise

Thus, students need a solid understanding of
imperative languages

They do benefit from exposure to other
paradigms

(Also, they need to be able to distinguish be-
tween “languages” and “paradigms”)

Domains of Common Languages

Assembly simplify machine language
FORTRAN numerical computation
COBOL business

LISP symbolic computation; Al

Algol algorithmic description

Simula simulation

Pascal teaching structured programming
C systems programming

Prolog exprt systems; NLP

Smalltalk workstations

LOGO kids

CH++ simulation

Ada embedded systems; megaprogramming
ML theorem proving

Most languages are ill-suited for applications
outside their intended domains!!

Choosing the FIRST Language

Three theories:

1. No Language: students are first exposed
to design methodology. (Okay if sufficiently
formal and specifications can be executed.)
Variation: use a modern visual language.

2. Simplicity and Elegance: e.g. ML, Haskell,
Scheme, . ..

3. Something they might really use: e.g.
Ada, C, C+—+, ...

We must ensure students do not form first-language
“biases” nor become “limited” in their way of
thinking

Ada as a First Language

If an imperative langauge is used first, Ada is
the best choice:

e More refined than, say, Pascal

— superior syntax (end, return)

— can return anything (almost) from a func-
tion

—safe for-loop, variant records, case state-
ments

e Lrrors are caught early

e Fixceptions, Ageregates, Packages
e Ada 83 is an ISO standard

e As advanced topics need to be introduced
(e.g. concurrency) there is no need to move
to a new language

Why NOT Use C++ First?

e Syntax (open, type definitions...)

e 30000 + 30000 = -5536 on 16-bit machines

e Frrors caught late (linker errors, even)

o IMPLICIT COERCIONS!!

e Fixceptions pasted on language (not integrated)
e Overreliance on pointers

e Switches and for-loops not so nicely struc-
tured

e Module structure unsophisticated, external
to language; compilation seems more inde-
pendent than separate.

What About OO

e OOT is good — OOA, OOD, OODB — pro-

vides a natural way of modeling the world

e You don’t need an OOPL to implement OOA
and OOD but OOF’s think so

e OOFs distinguish object-based from object-
oriented

e Inheritance good for extensibility and AFs,
but it compromises abstraction

e [RONY OF C++: excellent object features
mixed with (do not hide) insecure system
programming foundation.

OOP and Ada

Ada 83 offers:

e ADTSs through packages and private types
e Inheritance through derived types
e Static polymorphism only

e Tasks to model both active objects and re-
SOUTCes

Ada 94 adds:

e Hierarchical libraries for superior physical or-
ganization

e Inheritance and dynamic polymorphism through
tagged types

e Protected objects for resources (check these
out!)

Language Usage at LMU

Philosophy: give them two years of Ada before
letting them loose on C+-+

Some undergraduate CS courses, and featured
languages of instruction:

Intro to CS Programming Lab
(Ada) (Ada)
Data Strs/Algs 1 Data Strs/Algs 11
(Ada) (Ada)
Systems Programming
(Ada,Assembler)
Computation Theory Object Orientation
() (C++)
Programming Languages| Operating Systems
(ML,Ada,C++,Smalltalk) (C)
Computer Graphics Compiler Construction
(C++) (C++,Ada)
Al Database Systems
(LISP/CLOS,Prolog) (SQL,Prolog)

Software Engineering

(C++)

Senior Thesis

(?)

Ada in the Freshman Courses at LMU
(1 of 2)

When introducing Ada first the CS1 teacher
must focus more on program structure than “tra-
ditional” top-down algorithmic design.

with-clauses in the first example program(s)
can be a good thing!

Don’t teach too much of the language: but pack-
ages and exceptions are essential!

Progression of Ada-related topics:

1. A simple Ada program (subprogram!)
2. Putting your program in the Ada library
3. Subprograms

4. Writing one’s own packages

Ada in the Freshman Courses at LMU
(2 of 2)

Second Semester: Programming Laboratory Course.
Exercises (courtesy of P. Dorin)

. Clock Simulation

. Water Tank Simulation

. Package for interfacing to ANSL.SY'S

. Tank Simulator Animation with ANSI package
. Playing Cards package

. Eight Queens

“Unbounded” Integer package

. Fibonacci number with unbounded integers

© 00 =1 O Ul A W N

“Make Change” using Dynamic Programming

10. Quicksort

Experience with Ada

Benefits of using Ada early have been realized
among LMU students

e Packages and Exceptions are learned as ba-
sic, not “advanced”, language constructs and
are used properly

e Student programs look much prettier (are al-
ways perfectly indented) than past programs
in Pascal or C

e Initially learned “good habits” in program-
ming style carry over into C++ (comments
in header files, use of readable identifiers)

Summary

e Software Engineers require certain skills

e Universities must enhance the development
of these skills

e There are different theories regarding the use
of programming languages in the cirricula

e Ada should be taught before C++

