**
but will sometimes be ^
. Math.pow is or x*x*x
are both okay if the language does not have the symbolic operator.
Notation or Language | Cube Function |
---|---|
Lambda Calculus | $(\lambda x.\,\textrm{power}\;x\;3)$ $\lambda x.\,\textrm{power}\;x\;3$ $\lambda x.\,x^3$ |
Lisp | (LAMBDA (x) (* x x x)) |
Python | lambda x: x ** 3 |
JavaScript | x => x ** 3 |
Java | x -> x * x * x |
Ruby | ->(x) {x ** 3} |
Clojure | #(* % % %) |
Swift | { $0 * $0 * $0 } |
Rust | |x| {x * x * x} |
Kotlin | {x: Double -> x * x * x} |
Go | func(x float64)float64 {return x * x * x} |
Haskell | \x -> x ^ 3 |
$\boxed{\neg Lu \rightarrow \neg W\!up}$
$\boxed{\lozenge \mathbf{P}(La \vee \forall p. (Sap \supset Lp))}$
$\boxed{\exists d. (Dd \wedge \forall c. (Cc \wedge Lc(\iota c.Ctc)) \supset Kdc)}$
or
$\boxed{\exists d. (Dd \wedge \exists c. (Cc \wedge Lc(\iota c.Ctc) \wedge Kdc))}$
$\boxed{P(\iota p.Wrp)ot}$
$\boxed{\mathbf{G}(\neg (3 > 7))}$
or
$\boxed{\neg \mathbf{F}(3 > 7)}$
$\boxed{\neg \forall x.(Ox \supset x > x^2)}$
or
$\boxed{\exists x.(Ox \wedge \neg(x > x^2))}$
$\boxed{\exists x. (Ex \wedge \forall y. (Ey \wedge \neg(y=x)) \supset Cxy)}$
$\boxed{\mathbf{F} \lozenge \exists s. (\forall p. Sps)}$
$\boxed{(w = p) \wedge (f = s) \wedge (i = g)}$
$\boxed{\forall Q.(\mathbf{P}Q \supset \mathbf{F} \square \mathbf{G}(\neg Q))}$
Tricky! This is a second-order statement, because the statement is being made about predicates and not about individuals. It’s possible, but super clunky, to do it this way: Let $Vx$ mean “verily $x$“ and $Nx$ mean “$x$ is Not so” which gives us: $\forall x.(\mathbf{P}(Vx) \supset \mathbf{F} \square \mathbf{G}(Nx))$.
What is the Big Deal?
What this means is that any system of logic powerful enough to make statements about itself has no consistent, complete axiomatization! Once you create a system powerful enough to do self-reference, you cannot have both consistency and completeness.You simply cannot prove all the true statements, unless you have an inconsistent system which proves everything.
python3 -c 'print(pow(790912853,3892359,90277))'
)