
The C++ Standard Library

Ray Toal
Loyola Marymount University

and CitySearch, Inc.
May 13, 1998

Outline

• Background
• What is in the Standard Library
• Organization of the Library
• Tour of the Library

– Overview of the Modules
– Code Examples

• Concluding Remarks

Goals and Objectives

• To present the overall organization and
examples of the use of the C++ Standard Library
so that
– Programmers will be able to start using the library

right away
– Programmers will be able to get rid of tons of poorly

commented, under-tested, non-standard, container
libraries that defy (large-scale) reuse

What This Talk is About

• What is in the Standard Library and how the
library is organized

• Why the Standard Library looks the way it does
• How to write code using the Standard Library

(via examples)
• Helping you to become a better C++

programmer

What This Talk is NOT About

• Introductory C++ Programming
• Object Oriented Programming (the library

purposely has a very evident non-object-oriented
feel!)

• Detailed contents of the headers (we prefer code
samples)

• Language Wars
• Alexander Stepanov

C + +

ISO C++?

• C++ will be accepted as an official ISO standard
sometime in 1998.

• Has been a moving target for too long:
implementers attempt to keep up (sort of);
developers face incompatibility problems

• Old compilers and legacy code with outdated
language features still in use :-(

Evolution of C++

• There have been many language changes since
1990 that many people are not aware of, such as

templates, exceptions, bool, true, false, explicit,
new-style casts, The Standard Library,
namespaces, RTTI, member templates, typename,
declarations in if and while conditions, explicit
instantiation, new keywords, ...

Simple Example 1
#include <iostream>
#include <string>

int main(int argc, char** argv)
{

std::string name;
if (argc > 1) name = argv[1];
else std::cin >> name;
std::cout << "Hello, " + name;
return 0;

}

Simple Example 2
#include <iostream>
#include <string>
using namespace std;

int main(int argc, char** argv)
{

string name;
if (argc > 1) name = argv[1];
else cin >> name;
cout << "Hello, " + name;
return 0;

}

LIBRARY OVERVIEW

Motivation

• C++ is too popular to not have a standard library
• Everyone, it seems, has written wrappers for

everything (witness too many incompatible and
buggy string classes)

• The Standard C++ Library should contain the
Standard C Library as a subset

Standard Library Design (1 of 2)

• Provides support for language features (e.g.
RTTI, memory management)

• Supplies implementation-dependent information
(like limits)

• Supplies functions that you wouldn’t write in C++
itself so they can be optimized for a particular
platform (e.g., sqrt, memmove)

Standard Library Design (2 of 2)

• Supplies non-primitive facilities to encourage
portability (e.g. containers, sort functions, I/O
streams)

• Has conventions for extending the facilities it
does provide

• Is not stuffed with non-universal facilities such as
graphics and pattern matching

Structure of the Library

• The Standard Library is comprised of 50
modules (18 are from C):
<algorithm>, <bitset>, <cassert>, <cctype>, <cerrno>, <cfloat>, <ciso646>,
<climits>, <clocale>, <cmath>, <complex>, <csetjmp>, <csignal>, <cstdarg>,
<cstddef>, <cstdio>, <cstdlib>, <cstring>, <ctime>, <cwchar>, <cwctype>,
<deque>, <exception>, <fstream>, <functional>, <iomanip>, <ios>, <iosfwd>,
<iostream>, <istream>, <iterator>, <limits>, <list>, <locale>, <map>,
<memory>, <new>, <numeric>, <ostream>, <queue>, <set>, <sstream>,
<stack>, <stdexcept>, <streambuf>, <string>, <typeinfo>, <utility>, <valarray>,
<vector>

Logical Organization

• It is useful to group the 50 modules into ten
informal categories:

Containers Strings
General Utilities Input / Output
Iterators Localization
Algorithms Language Support
Diagnostics Numerics

TOUR OF THE LIBRARY

Containers

• The Standard Library's container classes use
templates (genericity) and not inheritance! (No
abstract base container class: containers simply
support a standard, recognizable set of basic
operations)

• Design is "the result of a single-minded search
for uncompromisingly efficient and generic
algorithms"

Containers

• <vector> one-dimensional arrays
• <list> doubly-linked lists
• <deque> double-ended queues
• <queue> FIFO queues and priority queues
• <stack> stacks
• <map> dictionaries (associative arrays)
• <set> sets
• <bitset> bit sequences

List Example
#include <iostream>
#include <list>
#include <string>
using namespace std;

int main(int, char**)
{
 list<string> names; // default constructor makes it empty
 names.push_back("dva"); names.push_front("odin"); names.push_back("tri");
 for (list<string>::iterator i = names.begin(); i != names.end(); i++)
 cout << *i << '\n';
 return 0;
}

Map Example
#include <iostream>
#include <map>
#include <string>
using namespace std;

int main(int, char**)
{
 map<string, int> m; m["juan"] = 19; m["svetlana"] = 26;
 cout << m["ciaran"] << '\n';
 map<string, int>::iterator i = m.find("juan");
 if (i != m.end()) cout << (*i).second << '\n' << m.size() << '\n';
}

Container Interface

• Standard Containers are all template classes
which contain
– typedefs iterator, reverse_iterator, and others
– empty(), clear(), erase(), size(), max_size(), begin(),

end(), rbegin(), rend(), swap(), and get_allocator()
• Certain containers have other members
• There is no hierarchy of containers!

Utilities, Iterators and Algorithms

• <utility> operators and pairs
• <functional> function objects
• <memory> allocators for containers
• <iterator> iterators
• <algorithm> general algorithms

The header <cstdlib> contains bsearch() and qsort() which
are underpowered, useless and inefficient.

Some Algorithms

• <algorithm> contains, among others,
for_each(), find(), find_if(), count(), count_if(), search
(), equal(), copy(), swap(), replace(), fill(), remove(),
remove_if(), unique(), reverse(), random_shuffle(),
sort(), merge(), partition(), binary_search(), includes
(), set_union(), make_heap(), min(), max(),
next_permutation()

Algorithm Example
#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
using namespace std;

int main(int, char**)
{
 vector<int> a; for (int i = 0; i < 100; i++) a.push_back(i);
 random_shuffle(a.begin(), a.begin()+75);
 for (int i = 0; i < a.size(); i++) cout << a[i] << ' ';
 sort(a.begin(), a.end(), greater<int>());
 for (int i = 0; i < a.size(); i++) cout << a[i] << ' ';
}

Diagnostics

• <stdexcept> defines some standard
exception classes thrown by
many library operations

• <cassert> contains the assert() macro
• <cerrno> C-style error handling, needed

to support legacy code

Strings

• The header <string> defines the template class
basic_string and the classes string and wstring,
which are instantiations of basic_string with char
and wchar

• Strings have real copy semantics, you can
assign using =, compare with <= and >, etc.

• Prefer strings to error-prone C-style char pointers

String Example
#include <iostream>
#include <string>
using namespace std;

int main(int, char**)
{
 string s1 = "Hello", s2("Goodbye"), s3, s4(s2, 4,3);
 s3 = s1; s3[1] = 'u';
 cout << s1 << ' ' << s3 << s2.length() << '\n';
 string message = s1 + ',' + " then " + s2;
 message.replace(7, 4, "and");
 cout << message << s4 << ' ' << s2.find('y') << '\n';
}

Input/Output

• <ios> basic stream types and ops
• <streambuf> buffers for streams
• <istream> input stream template class
• <ostream> output stream template class
• <iostream>standard streams like cin and cout
• <fstream> files to/from streams
• <sstream> strings to/from streams
• <iomanip> some stream manipulators

Stream Example
Note: #includes for <iostream>, <iomanip>, <fstream> and <stdexcept> omitted for space

int main(int, char**)
{
 ifstream f; double x; f.open("numbers.txt");
 if (!f) throw new runtime_error("missing file");
 while (true) {
 f >> x;
 if (f.bad()) throw new runtime_error("corrupted");
 if (f.fail()) {if (f.eof()) break; else throw new runtime_error("junk");}
 cout << fixed << setprecision(4) << x << '\n';
 } // note stream f closed in destructor
} // note catching and reporting runtime_errors omitted for space

Localization

• The header <locale> contains a class called
locale, other classes such as money_get and
money_put, and a number of operations such as
isalpha(), isdigit(), isalnum(), isspace(), ispunct(),
iscntrl(), isupper(), islower(), toupper(), tolower()

Language Support

• <limits> numeric limits
• <new> dynamic memory management
• <typeinfo> RTTI support
• <exception> exception class

In addition there are several headers from the C library:
<climits>, <cfloat>, <cstddef>, <cstdarg>, <csetjmp>, <cstdlib>,
<ctime>, <csignal>

Numerics

• <complex> a class for complex numbers
and many global operations

• <valarray> numeric vectors and operations
• <numeric> generalized numeric operations:

accumulate(), partial_sum(),
adjacent_difference(), inner_product()

• <cmath> mathematical functions
• <cstdlib> C-style random numbers and

abs(), fabs(), div()

CONCLUDING REMARKS

Advice

• Use the Standard Library in all your new work;
port old code to practice if feasible

• Remember the "C-style" way is almost always
inferior to the "C++-style"

• Compose your own quick-reference guide to
library facilities

• Read the Advice sections (16.4, 17.7, 18.12,
19.5, 20.5, 21.10, 22.8) in Stroustrup's book

For More Information

• Bjarne Stroustrup, The C++ Programming
Language, Third Edition, Addison-Wesley, 1997.
ISBN 0-201-88954-4.

(Credits: This whole talk is organized pretty much like
Part III of the above book and borrows many of the

reference tables from it)

