UNIVERSITY OF CALIFORNIA, LOS ANGELES
 Computer Science Department

NOTES on LAMBDA CALCULUS

David F. Martin
Fall 1992

INTRODUCTION

Lambda calculus, invented by Alonzo Church in the 1930s, is a general but syntactically simple model of computation. It was conceived as part of a system of higher-order logic and function theory. The first undecidability results were for lambda calculus; similar results for Turing machines came later. In addition to its purely mathematical applications, lambda calculus is important in the study of computer programming languages. It has served as a basic linguistic prototype from which LISP, ALGOL-like languages, and functional programming languages have been derived. It also serves as a basic metalanguage for expressing the denotational semantics of programming languages.

These notes are a brief introduction to the type-free lambda calculus. Two versions of the type-free lambda calculus are presented: the call-by-name (CBN) and the call-by-value (CBV) calculi. The CBN calculus was the original version of the lambda calculus; the CBV calculus is a related derivative motivated by computer science applications. These lambda calculi share the same syntax, and the CBV calculus was formulated to have the desirable properties of the CBN calculus, the most notable of these being the satisfaction of the Church-Rosser Theorem.

Much of the material in these notes was gleaned from Plotkin (1975). Encylopedic references are Barendregt (1984) and Hindley and Seldin (1986). An introduction to the type-free lambda calculus is Barendregdt (1977). Introductions to typed lambda calculus can be found in Hindley and Seldin (1986) and Revesz (1988). An historical account of the development of the lambda calculus is given in Rosser (1984). Davis (1989) contains a very nice account of the relation between the deductive and computation aspects of lambda calculus. Peyton-Jones (1987) is an excellent reference on functional programming languages; Chapters 8 and 9 (written by P. Hancock) provide an introduction to type checking. An excellent and detailed tutorial on how to implement functional programming languages is provided by Peyton-Jones and Lester (1992). References on lambda calculus and functional programming are given in the concluding section (References) of these notes.

THE SYNTAX OF LAMBDA NOTATION

Lambda notation is a useful technique for writing function denotations and expressing their application to actual arguments. Two syntaxes are commonly used in practice: an unambiguous one, sometimes used by mathematicians, and an ambiguous one, used both in mathematics and computer science. The syntax definitions below are written as context-free grammars; they generate the syntax domain Term of lambda terms, simply called "terms" for brevity. Two primitive syntax domains are assumed: Var, an infinite set of variables, and Const, a (not necessarily infinite) set of constants. In the following grammar, variable \in Var, constant \in Const, and terms are generated by the nonterminal term \in Term.

	Syntax of Lambda Terms
U1	term $::=$ constant
U 2	term $::=$ variable
U 3	term $::=($ term term $)$
U 4	term $::=\lambda$ variable \cdot term

A term constructed by rule U3 is called a combination, and is intended to represent function application. A
combination's left term is called its operator, and the right term is called its operand. A term constructed by rule U4 is called an abstraction, and is intended to represent a function denotation. An abstraction's variable is called its bound variable (the function's formal parameter), and the term is called its body. A term is a value if and only if it is not a combination.

Function application is often written $f x$ instead of $(f x)$ (or $f(x)$). Using juxtaposition to denote function application introduces ambiguity that can be removed explicitly by using parentheses or implicitly by assuming that function application associates to the left: $f g x$ means $((f g) x)$.

The (multilayer) abstraction $\lambda x_{1} \cdots \lambda x_{n} . M$ is often written as $\lambda x_{1} \cdots x_{n} . M$. Infix binary function application is often informally used: $x+y, x=0$, etc., where (for example) $x+y$ informally represents $((+x) y)$.

Two terms M and N are identical, written $M \equiv N$, if they are, symbol for symbol, exactly the same.

Subterms and Contexts

Any term is a subterm of itself. In addition, a combination's operator and operand are each a subterm of that combination, and an abstraction's body is a subterm of that abstraction. M is a proper subterm of N if M is a subterm of N and $M \not \equiv N$.

A context, denoted $C[]$, is a term from which one subterm has been deleted. The deleted subterm is denoted by a pair [] of brackets. An example context is $C[] \equiv \lambda x .(x[])$. The result of replacing the missing subterm of a context $C[]$ with a term M is denoted $C[M]$. In the foregoing example, $C[(x y)] \equiv \lambda x$. $(x(x y))$.

FREE AND BOUND VARIABLES

Each term X has a set $F V(X)$ of free variables and a set $B V(X)$ of bound variables, defined by induction on the structure of X as follows. Let M, N be terms, $x \in$ Var, and $a \in$ Const.

X	$F V(X)$	$B V(X)$
a	\emptyset	\emptyset
x	$\{x\}$	\emptyset
$(M N)$	$F V(M) \cup F V(N)$	$B V(M) \cup B V(N)$
$\lambda x . M$	$F V(M)-\{x\}$	$B V(M) \cup\{x\}$

A term X is closed iff $F V(X)=\emptyset$; otherwise it is open. Closed terms are sometimes called combinators.

PROPER SUBSTITUTION

Let $\mathcal{V}=\left\langle x_{1}, x_{2}, \ldots\right\rangle$ be an infinite list of variables. Let X, M, N be terms, $x, y \in \operatorname{Var}$, and $a \in$ Const.
Proper substitution of M for all free occurrences of x in X, written $X[M / x]$, is defined inductively on the structure of X as follows.

X	$X[M / x]$
a	a
x	M
$y, y \neq x$	y
$\left(N_{1} N_{2}\right)$	$\left(N_{1}[M / x] N_{2}[M / x]\right)$
$\lambda x . N$	$\lambda x . N$
$\lambda y . N, y \neq x$	$\lambda z .((N[z / y])[M / x])$

where z is the variable defined by:
(1) if $x \notin F V(N)$ or $y \notin F V(M)$, then $z \equiv y$;
(2) otherwise, z is the first variable in \mathcal{V} such that $z \notin F V(N) \cup F V(M)$.

Note that $\lambda z .((N[z / y])[M / x])$ reduces to $\lambda y .(N[M / x])$ when $z \equiv y$. The restrictions in (1) and (2) prevent free variables of a term substituted into the body of an abstraction from becoming bound variables in that abstraction. This would improperly change the semantics of the new abstraction, and would render the lambda calculus inconsistent (it could then be deduced in λ_{N} (see below) that $M=N$ for any two terms M and N). Such an improper change of free variables into bound variables is called capture (of free variables).

A structure of the form $[M / x]$, where M is a term and x a variable, is called a substitution. Note that a substitution applied to a term is a unary suffix operator. Substitutions θ_{i}, unlike ordinary functions (which are applied as prefix operators), associate to the left, i.e., $M \theta_{1} \theta_{2}=\left(M \theta_{1}\right) \theta_{2}$ and the members of a sequence $\theta_{1} \theta_{2} \cdots \theta_{n}$ of substitutions applied to a term are applied from left to right. Some authors define substitution as a unary prefix operator, in which case substitutions associate to the right.

THE CALL-BY-NAME (CBN) LAMBDA CALCULUS λ_{N}

The call-by-name (CBN) lambda calculus λ_{N} is given by a formal system (that looks like a formal logic, with axioms and inference rules) that defines a conversion relation $=_{N}$ (sometimes written simply as $=$ when no confusion results) between terms. λ_{N} is a formal theory of $C B N$ lambda equality. To avoid confusion with ordinary equality, $=$ is sometimes written $c n v$ (denoting conversion), as in M cnv N.

Let $x, y \in \mathbf{V a r}$; let $a, b \in \mathbf{C o n s t}$; let M, N, Z be terms.

	CBN Lambda Calculus λ_{N}
$\mathrm{I}(\alpha)$	$\lambda x \cdot M=\lambda y \cdot(M[y / x])$, provided that $y \notin F V(M)$
$\mathrm{I}(\beta)$	$(\lambda x \cdot M N)=M[N / x]$ $\mathrm{I}(\delta)$ $(a b)=$ ConstApply(a,b), if defined
$\mathrm{II}(1)$	$M=M$
$\mathrm{II}(2)$	$\frac{M=Z, Z=N}{M=N}$
$\mathrm{II}(3)$	$\frac{M=N}{N=M}$
$\mathrm{III}(1)$	$(\mathrm{a}) \frac{M=N}{(M Z)=(N Z)}$, (b) $\frac{M=N}{(Z M)=(Z N)}$
$\operatorname{III}(2)$	$\frac{M=N}{\lambda x \cdot M=\lambda x \cdot N}$

The rules in group I are the basic conversion rules of λ_{N}. Rule $\mathrm{I}(\alpha)$, called α-conversion, specifies the renaming, or change, of bound variables in a term. The restriction $y \notin F V(M)$ prevents capture of free occurrences of y in M by λy. Rule $\mathrm{I}(\beta)$ specifies contraction (also called β-reduction) and rule $\mathrm{I}(\delta)$ specifies the corresponding operation of constant contraction (also called δ-reduction). The partial function

ConstApply : Const \times Const \xrightarrow{P} ClosedValues,

where ClosedValues denotes the set of closed terms that are also values, specifies how to reduce combinations in which both components are constants. The term ($\lambda x . M N$) in rule $\mathrm{I}(\beta)$ is called a $C B N \beta$-redex
(reducible expression). In rule $\mathrm{I}(\delta)$, the term $(a b)$, when Const Apply (a, b) is defined, is called a $C B N$ δ-redex.

The rules in group II assert that $=$ is reflexive, transitive, and symmetric, i.e., that $=$ is an equivalence relation. The rules in group III make $=$ substitutive .
λ_{N} can be viewed as a formal deductive system in which the well-formed formulas (WFFs) have the form $M=N$, where M and N are terms. $\lambda_{N} \vdash M=N$ means that $M=N$ is provable by the rules of λ_{N}, i.e., $M=N$ is a theorem of $\lambda_{N} . \lambda_{N} \vdash M \triangleright N$ means that $M=N$ is provable by the rules of λ_{N} without using $I I(3)$. It is important to keep in mind that the relation $=$, despite its notational similarity to equality, is reflexive, transitive, and symmetric only because of rules $I I(1)-(3)$ in λ_{N}. If these rules were absent, then $=$ would not necessarily have these properties. Thus \triangleright is reflexive and transitive, but not symmetric.

Strictly speaking, $=$ and \triangleright should be written $=_{N}$ and \triangleright_{N} to denote that they are associated with λ_{N}, and this will be done when necessary to avoid confusion with other, similar, relations defined by other, similar, formal systems.
D is called a reduction relation; it expresses the reduction, or simplification, of a term into a usually simpler or shorter term. Although rules $\mathrm{I}(\alpha)-\mathrm{I}(\delta)$ all contribute to \triangleright, rules $\mathrm{I}(\beta)$ and $\mathrm{I}(\delta)$ are the ones that actually have the potential for term simplification, since $\mathrm{I}(\alpha)$ only renames a term's bound variables, which preserves the structure of that term. When $M \triangleright N$, we say that M is reduced to N.

THE CALL-BY-VALUE (CBV) LAMBDA CALCULUS λ_{V}

The call-by-value (CBV) lambda calculus λ_{V} is given by a formal system that defines a conversion relation $=_{V}$ and a reduction relation $\triangleright_{V} . \lambda_{V}$ is a theory of $C B V$ lambda equality. λ_{V} is the same as λ_{N} except for a restriction on rule $\mathrm{I}(\beta)$:

	CBV Lambda Calculus λ_{V}
$\mathrm{I}(\beta)$	$(\lambda x . M N)=M[N / x]$, provided that N is a value
	Rules $\mathrm{I}(\alpha), \mathrm{I}(\delta), \mathrm{II}(1)-\mathrm{II}(3)$, and III(1)-III(2) are the same as those in λ_{N}.

Recall that a value is a term that is not a combination. $\lambda_{V} \vdash M=N$ means that $M=N$ is provable by the rules of $\lambda_{V} . \lambda_{V} \vdash M \triangleright N$ means that $M=N$ is provable by the rules of λ_{V} without using $I I(3)$.

SUBTERM REPLACEMENT

The relations $M=N$ and $M \triangleright N$ (converting or reducing a term to another term) in λ_{N} and λ_{V} are established by formal deductions in those systems. Establishing these formal deductions can be a lengthy and tedious process. It would be easier to convert (reduce) a term to another term by simply replacing one of its subterms that is also a redex by another subterm to which that redex converts (reduces). Indeed, all of the conversion (reduction) is done by the axioms in group I. The rules in groups II and III simply distribute these conversions (reductions) over the components of combinations and the bodies of abstractions.

This conversion (reduction) strategy is justified by a derived rule of λ_{N} (and λ_{V}) called subterm replacement (also called the substitution rule), stated using the notion of contexts:

	Subterm Replacement
IV	$\frac{M=N}{C[M]=C[N]}$, for all contexts $C[]$

NORMAL FORMS

A term is in $C B N$ ($C B V$) normal form ($N F$) if none of its subterms is a CBN (CBV) β - or δ - redex. A term is said to have a $N F$ if it can be reduced to a NF.

It is important to note that not every term has a NF. For example, $(\lambda x .(x x) \lambda x .(x x))$ does not have a NF in λ_{N} or λ_{V} because it is both a CBN and CBV β-redex that cannot be converted or reduced to anything but itself in λ_{N} and λ_{V}.

Unfortunately, even if a term has a NF, it may not be possible to determine it: there exists no algorithm to determine whether or not an arbitrary term has a NF.

THE CHURCH-ROSSER THEOREM

Usually one term can be reduced, or simplified, to another via \triangleright in a variety of ways. This is because a term may contain several redexes, any one of which can be chosen to be contracted next by an application of $\mathrm{I}(\beta)$ or $\mathrm{I}(\delta)$. It is natural, and important, to ask whether the choice of redex on which to carry out an individual reduction makes any "difference" in the outcome of a sequence of individual reductions applied to reduce one term to another. The Church-Rosser Theorem (CRT) and a Corollary say that different sequences of choices yield results that are "essentially the same" in a precise sense defined below. The CRT applies to both λ_{N} and λ_{V}. In the statement of the theorem, λ represents either λ_{N} or λ_{V} throughout.

The Church-Rosser Theorem

Let L, M_{1}, M_{2}, and N be terms. If $\lambda \vdash L \triangleright M_{1}$ and $\lambda \vdash L \triangleright M_{2}$, then there exists N such that $\lambda \vdash M_{1} \triangleright N$ and $\lambda \vdash M_{2} \triangleright N$.

Terms M and N are alphabetically equivalent, written $M \equiv_{\alpha} N$, if $\lambda \vdash M=N$ without using rules $I(\beta)-(\delta)$, where λ represents either λ_{N} or λ_{V}. In other words, two terms are alphabetically equivalent if they differ only in the names of their bound variables. Alphabetic equivalence is clearly an equivalence relation.

Corollary (to the Church-Rosser Theorem)

If $\lambda \vdash L \triangleright M_{1}$ and $\lambda \vdash L \triangleright M_{2}$ and M_{1} and M_{2} are both in NF, then $M_{1} \equiv{ }_{\alpha} M_{2}$.
The above corollary states that if a term can be reduced to different NFs, then these NFs are alphabetically equivalent, i.e., they are the same except for the names of their bound variables. The CRT and its Corollary state that if a term has a NF, then that NF is unique (up to the names of its bound variables).

In λ_{V}, the restriction that N be a value in $\mathrm{I}(\beta)$ is essential to ensure that the CRT holds for λ_{V}. If, as might be natural to suggest, this restriction were changed so that N is required to be a $C B V N F$ instead of a value, then the CRT fails for such a modified version of λ_{V}. An example of such a failure is provided by

$$
\begin{aligned}
& L=(\lambda x \cdot(\lambda y \cdot z(x \lambda x \cdot(x x))) \lambda x \cdot(x x)) \\
& M_{1}=z \\
& M_{2}=(\lambda y \cdot z(\lambda x \cdot(x x) \lambda x \cdot(x x)))
\end{aligned}
$$

Thus $\lambda_{V} \vdash L \triangleright M_{1}$ and $\lambda_{V} \vdash L \triangleright M_{2}$, but since M_{1} is in NF and M_{2} cannot be further reduced to anything but itself, there exists no term N such that $\lambda_{V} \vdash M_{1} \triangleright N$ and $\lambda_{V} \vdash M_{2} \triangleright N$. In the original version of λ_{V}, $\lambda_{V} \vdash L \triangleright M_{2}$, but $\lambda_{V} \nvdash L \triangleright M_{1}$ because $(x \lambda x .(x x))$ is not a value.

STANDARD REDUCTION STRATEGIES

The CRT and its corollary state that if a term can be reduced to NF in two different ways, then the (possibly different) NFs obtained are alphabetically equivalent, and so the particular order of reduction chosen doesn't make any essential difference in the resulting NF. There is, however, a "standard" way of choosing a next redex to contract that ensures the reduction of a term to NF, provided that the term actually has a NF.

In what follows, the unambiguous syntax of λ-terms is assumed. A redex that is a subterm of a term is
the leftmost redex of that term if the leftmost symbol of that redex is located to the left of the leftmost symbol of any other redex that is a subterm of the term. A normal order reduction sequence is a sequence of terms in which the last element is a NF of the first element, and in which each element is obtained from the immediately previous element by contracting the previous element's leftmost β - or δ-redex. A normal order reduction strategy (NORS) is one whereby a term is reduced to NF via a normal order reduction sequence.

The Standardization Theorem

If a term has a NF, then that NF can always be obtained (to within alphabetic equivalence) by reducing the term via a NORS.

The Standardization Theorem applies to both λ_{N} and λ_{V}. In λ_{N}, a normal order reduction strategy is often called a leftmost outermost reduction strategy. The word "outermost" is redundant if the unambiguous syntax of terms is assumed: the leftmost redex is also an outermost one. The NORS is often called the "call-by-name" reduction strategy. Still within λ_{N}, there is another reduction strategy, the applicative order reduction strategy (AORS), in which the leftmost innermost β - or δ-redex is contracted. The AORS is often called the "call-by-value" reduction strategy (not to be confused with λ_{V}) because it forces the operand of a β-redex to be reduced to NF before that β-redex can be contracted.

If a term has a NF then the NORS will always obtain it (to within alphabetic equivalence), whereas the AORS may not. For example, let $\Delta \equiv \lambda x .(x x)$. Then
(NORS) : $(\lambda y \cdot x(\Delta \Delta)) \triangleright x[$ converges to NF]
(AORS) : $(\lambda y . x(\Delta \Delta)) \triangleright(\lambda y . x(\Delta \Delta)) \triangleright \cdots$ [diverges]

η-REDUCTION

Because it provides a reasonable and desirable way to help simplify terms, an additional rule, called η reduction, is often included in λ_{N} :

	η-Reduction
$\mathrm{I}(\eta)$	$\lambda x .(M x)=M$, provided that $x \notin F V(M)$.

Rule $\mathrm{I}(\eta)$ is a cancellation rule that permits simplifications such as $\lambda x \cdot f(x)=f$. The restriction $x \notin F V(M)$ is necessary; its omission would render λ_{N} inconsistent. If x were free in M, then reducing λx. ($M x$) to M would be intuitively (and semantically) invalid because x is not free in λx. ($M x$) whereas x is left "floating" free in M after the reduction.

Rule $I(\eta)$ combines with rule $\operatorname{III}(2)$ to yield the Extensionality Principle:

	Extensionality Principle
V	$\frac{(M x)=(N x)}{M=N}$, provided that $x \notin F V(M) \cup F V(N)$.

The Extensionality Principle expresses the lambda calculus form of the notion of extensional equality of functions: $f=g$ iff $(\forall x)(f(x)=g(x))$.

Unfortunately, if $\mathrm{I}(\eta)$ is included in λ_{V}, the CRT fails for λ_{V}, as in

$$
\begin{aligned}
& L=(\lambda x \cdot y \lambda x \cdot((\lambda x .(x x) \lambda x \cdot(x x)) x)) \\
& M_{1}=y \\
& M_{2}=(\lambda x \cdot y(\lambda x .(x x) \lambda x .(x x)))
\end{aligned}
$$

$L \triangleright M_{1}$ via $\mathrm{I}(\beta)$ whereas $L \triangleright M_{2}$ via $\mathrm{I}(\eta)$; this latter reduction could not be made without $\mathrm{I}(\eta)$. The problem with including $\mathrm{I}(\eta)$ in λ_{V} is that this rule can convert a term that is a value into one that is no longer a value. This occurred in $L \triangleright M_{2}$.

THE CONSISTENCY OF λ_{N} AND λ_{V}

The CRT plays a vital role in establishing the consistency of λ_{N} and λ_{V} as deductive systems. $\lambda_{N}\left(\lambda_{V}\right)$ is consistent if there exists a WFF $M=N$ such that $\lambda_{N} \nvdash M=N\left(\lambda_{V} \nvdash M=N\right)$, i.e., $M=N$ is not a theorem of $\lambda_{N}\left(\lambda_{V}\right)$. Equivalently, $\lambda_{N}\left(\lambda_{V}\right)$ is inconsistent if $\lambda_{N} \vdash M=N\left(\lambda_{V} \vdash M=N\right)$ for all WFFs $M=N$, i.e., $M=N$ is a theorem of $\lambda_{N}\left(\lambda_{V}\right)$ for any terms M and N.

Theorem: λ_{N} and λ_{V} are consistent.
Proof. Suppose that λ_{N} were not consistent. Then for all terms M and $N, \lambda_{N} \vdash M=N$. In particular, $\lambda_{N} \vdash \lambda x . \lambda y . x=\lambda x . \lambda y . y$. But both $\lambda x . \lambda y . x$ and $\lambda x . \lambda y . y$ are in NF and $\lambda x \cdot \lambda y . x \nexists_{\alpha} \lambda x \cdot \lambda y . y$, which contradicts the Corollary to the CRT. The proof is similar for λ_{V}.

COMPUTATION VERSUS DEDUCTION IN λ_{N} AND λ_{V}

The reduction of a term to NF can be viewed as a "computation" that terminates in the sense that the term cannot be further simplified by applications of rules $\mathrm{I}(\beta)-(\delta)$ (and $\mathrm{I}(\eta)$ if present in λ_{N}). In this sense, it seems reasonable to regard the attempted reduction of a term that does not have a NF as leading to a "nonterminating" computation, and therefore in this computational sense, such a term can be regarded as representing "undefined". Continuing along this line, it seems reasonable to regard every term that does not have a NF as representing "undefined" and thus all terms not having a NF are identified (declared to be interconvertible, i.e., related by $=$) in λ_{N} (and λ_{V}). This can be accomplished by adding axioms $M=N$ to $\lambda_{N}\left(\lambda_{V}\right)$ when M and N do not have a CBN (CBV) NF. Let $\lambda_{N}^{\prime}\left(\lambda_{V}^{\prime}\right)$ denote $\lambda_{N}\left(\lambda_{V}\right)$ augmented with these axioms. Unfortunately, λ_{N}^{\prime} and λ_{V}^{\prime} are inconsistent.

Theorem: λ_{N}^{\prime} is inconsistent.
Proof [Davis (1989)]. Let $\mathbf{t t} \equiv \lambda x . \lambda y . x$ and $\mathbf{f f} \equiv \lambda x . \lambda y . y$. $\mathbf{t t}$ and $\mathbf{f f}$ are intended to be representations of true and false, respectively, in λ_{N}^{\prime}. Let U be any term that does not have a NF and let $Q \equiv \lambda x$. ($(x$ tt) $U)$ and $R \equiv \lambda x$. ($(x \mathrm{ff}) U)$. First of all, note that neither Q nor R has a NF because U doesn't. Thus $\lambda_{N}^{\prime} \vdash Q=R$. But

```
(Q tt)}\triangleright((\mathbf{tt tt)}U)\triangleright(\lambday.t\mathbf{t}U)\triangleright\mathbf{tt
(R\mathbf{tt})\triangleright((t\mathbf{fff})U)\triangleright(\lambday.ff U)\triangleright ff
```

and thus $\lambda_{N}^{\prime} \vdash(Q \mathbf{t t})=\mathbf{t t}$ and $\lambda_{N}^{\prime} \vdash(R \mathbf{t t})=\mathbf{f f}$. Since $\lambda_{N}^{\prime} \vdash Q=R, \lambda_{N}^{\prime} \vdash(Q \mathbf{t t})=(R \mathbf{t t})$ by subterm replacement, and thus $\lambda_{N}^{\prime} \vdash \mathbf{t t}=\mathbf{f f}$ by transitivity of $=$. Now let M and N be any two terms. It is easily shown that $\lambda_{N}^{\prime} \vdash((\mathbf{t t} M) N)=M$ and $\lambda_{N}^{\prime} \vdash((\mathbf{f f} M) N)=N$ and thus since $\lambda_{N}^{\prime} \vdash \mathbf{t t}=\mathbf{f f}, \lambda_{N}^{\prime} \vdash M=N$ by subterm replacement and the transitivity of $=$. Thus λ_{N}^{\prime} is inconsistent.

The inconsistency of λ_{V}^{\prime} is proved by the same argument.
There exist, however, "weaker" kinds of NF that do not introduce inconsistency in the above sense, called head NF (HNF) and weak head NF (WHNF) [Barendregt (1984), Field and Harrison (1988)]. In particular, a WHNF is the end result of reducing (computing upon) a term using machine models such as the SECD Machine [Field and Harrison (1988)] and practical implementations of functional programming languages [Peyton-Jones (1987)].

Using our syntax, a term is in WHNF if and only if it is a value (a term that is not a combination). Standard reductions of terms to WHNF (when possible) can be defined in terms of CBN and CBV left reduction relations $\rightarrow_{N}, \rightarrow_{V} \subseteq$ Term \times Term, that are the least relations between terms satisfying the following conditions.

	CBN and CBV Left Reduction Relations
1 N	$(\lambda x . M N) \rightarrow_{N} M[N / x]$
2 N	$(a b) \rightarrow_{N} C o n s t A p p l y(a, b)$ when defined
3 N	$(M N) \rightarrow_{N}\left(M^{\prime} N\right)$ if $M \rightarrow_{N} M^{\prime}$
4 N	$(M N) \rightarrow_{N}\left(M N^{\prime}\right)$ if $(M=a$ or $M=x)$ and $N \rightarrow_{N} N^{\prime}$
1 V	$(\lambda x . M N) \rightarrow_{V} M[N / x]$ when N is a value
2 V	$(a b) \rightarrow_{V} C o n s t A p p l y(a, b)$ when defined
3 V	$(M N) \rightarrow_{V}\left(M^{\prime} N\right)$ if $M \rightarrow_{V} M^{\prime}$
4 V	$(M N) \rightarrow_{V}\left(M N^{\prime}\right)$ if M is a value and $N \rightarrow_{V} N^{\prime}$

Informally, if $M \rightarrow_{N} N\left(M \rightarrow_{V} N\right)$, then N is obtained from M by contracting the leftmost CBN (CBV) redex of M that is not contained in the body of an abstraction.

Theorem [Plotkin (1975)]: For any term M and value $N, \lambda_{N} \vdash M \triangleright N$ iff $M \xrightarrow{*}{ }_{N} N$. The same result holds when λ_{N} and \rightarrow_{N} are replaced by λ_{V} and \rightarrow_{V}.

Rather that using λ_{N} and λ_{V}, closed terms can be reduced to WHNF (i.e., values) by corresponding (partial) evaluation functions eval ${ }_{N}$, eval $_{V}:$ ClosedTerms \xrightarrow{P} ClosedValues, defined as follows.

$\operatorname{eval}_{N}(M)\left(\operatorname{eval}_{V}(M)\right)$ yields M 's CBN (CBV) WHNF (a value) if M has such a WHNF; otherwise, $\operatorname{eval}_{N}(M)\left(e v a l_{V}(M)\right)$ is undefined. The following theorem relates the above evaluation functions (computation) to the left reduction relations and hence to the λ-calculi (deduction).

Theorem [Plotkin (1975)]: For any closed term M and value $N, \operatorname{eval}_{N}(M)=N$ iff there exists a term N^{\prime} such that $M \xrightarrow{*} N_{N}$ and $N^{\prime} \equiv_{\alpha} N$. The same result holds when eval l_{N} and \rightarrow_{N} are replaced by eval ${ }_{V}$ and $\rightarrow V$.

CONDITIONAL AND RECURSION IN THE LAMBDA CALCULUS

In this section, it is assumed that the evaluation functions eval ${ }_{N}\left(\right.$ for λ_{N}) eval ${ }_{V}$ (for λ_{V}) are used to compute a (closed) term to a value, if possible. Alternatively, the left reduction relations \rightarrow_{N} and \rightarrow_{V} could be used to reduce a term to a value.

Conditional

The conditional (if-then-else) operator can be encoded in the lambda calculus by introducing constants COND, true, and false. Let ConstApply y_{N} and ConstApply y_{V} denote the constant application function for λ_{N} and λ_{V}, respectively. Then

$$
\begin{aligned}
& \text { Const Apply }_{N}(\text { COND, true })=\lambda x \cdot \lambda y \cdot x \\
& \text { ConstApply }(\text { COND, false })=\lambda x \cdot \lambda y \cdot y \\
& \text { ConstApply } y_{V}(\text { COND, true })=\lambda x \cdot \lambda y \cdot\left(x a_{0}\right) \\
& \text { ConstApply }(\text { COND, false })=\lambda x \cdot \lambda y \cdot\left(y a_{0}\right)
\end{aligned}
$$

where a_{0} is an arbitrary constant. Let L, M, and N be terms. Then if L then M else N is encoded in λ_{N} and λ_{V} as follows:

```
(\lambdaN): (((COND L)M)N)
(\lambdaV): (((COND L) \lambdaz.M)\lambdaz.N) where z\not\inFV(M)\cupFV(N)
```

It is assumed that L can be reduced to one of the constants true or false. The "encapsulation" of M and N in $\lambda z . M$ and $\lambda z . N$ constructs a CBV conditional operator that prevents M and N from being evaluated until one of them has been selected.

Recursion

Let rec $x=M$ denote the recursive definition of x. Normally $x \in F V(M)$, but this is not necessary; if $x \notin F V(M)$, then no recursion is being defined. Define CBN and CBV fixed point combinators Y and Z :

$$
\begin{aligned}
& \left(\lambda_{N}\right): Y \equiv \lambda f \cdot(\lambda g \cdot(f(g g)) \lambda g \cdot(f(g g))) \\
& \left(\lambda_{V}\right): Z \equiv \lambda f \cdot(\lambda g \cdot(f \lambda h \cdot((g g) h)) \lambda g \cdot(f \lambda h \cdot((g g) h)))
\end{aligned}
$$

$\operatorname{rec} x=M$ is encoded in λ_{N} and λ_{V} as follows:

```
(\lambdaN):(Y \lambdax.M)
(\lambdaV):(Z \lambdax.M)
```


REFERENCES

Lambda Calculus

Barendregt, H. P., "The Type Free Lambda Calculus", in Barwise, J. (Ed.), Handbook of Mathematical Logic, North-Holland Publishing Co., Amsterdam, 1977, pp. 1091-1132.

Barendregt, H. P., The Lambda Calculus: Its Syntax and Semantics, 2nd Edition, North-Holland Publishing Co., Amsterdam, 1984.

Davis, R. E., Truth, Deduction, and Computation, Computer Science Press, New York, 1989.
Hindley, J. R. and Seldin, J. P., Introduction to Combinators and λ-Calculus, Cambridge University Press, Cambridge, U. K., 1986.

Plotkin, G. D., "Call-by-Name, Call-by-Value, and the λ-Calculus", Theoretical Computer Science 1: 125159, 1975.

Revesz, G., Lambda-Calculus, Combinators, and Functional Programming, Cambridge University Press, Cambridge, U. K., 1988.

Rosser, J. B., "Highlights of the History of the Lambda-Calculus", Annals of the History of Computing 6: 337-349, Oct. 1984.

Functional Programming Languages

Field, A. J. and Harrison, P. G., Functional Programming, Addison-Wesley, Reading, Mass., 1988.
Henson, M. C., Elements of Functional Languages, Blackwell Scientific Publications, Oxford, U. K., 1987.
Peyton-Jones, S. L., The Implementation of Functional Programming Languages, Prentice Hall International, Englewood Cliffs, N. J., 1987.

Peyton-Jones, S. L. and Lester, D. R., Implementing Functional Languages: A Tutorial, Prentice Hall International, Englewood Cliffs, N. J., 1992.

