
UNIVERSITY OF CALIFORNIA, LOS ANGELESComputer Science DepartmentNOTES on LAMBDA CALCULUSDavid F. MartinFall 1992INTRODUCTIONLambda calculus, invented by Alonzo Church in the 1930s, is a general but syntactically simple modelof computation. It was conceived as part of a system of higher-order logic and function theory. The �rstundecidability results were for lambda calculus; similar results for Turing machines came later. In addition toits purely mathematical applications, lambda calculus is important in the study of computer programminglanguages. It has served as a basic linguistic prototype from which LISP, ALGOL-like languages, andfunctional programming languages have been derived. It also serves as a basic metalanguage for expressingthe denotational semantics of programming languages.These notes are a brief introduction to the type-free lambda calculus. Two versions of the type-free lambdacalculus are presented: the call-by-name (CBN) and the call-by-value (CBV) calculi. The CBN calculus wasthe original version of the lambda calculus; the CBV calculus is a related derivative motivated by computerscience applications. These lambda calculi share the same syntax, and the CBV calculus was formulated tohave the desirable properties of the CBN calculus, the most notable of these being the satisfaction of theChurch-Rosser Theorem.Much of the material in these notes was gleaned from Plotkin (1975). Encylopedic references are Barendregt(1984) and Hindley and Seldin (1986). An introduction to the type-free lambda calculus is Barendregdt(1977). Introductions to typed lambda calculus can be found in Hindley and Seldin (1986) and Revesz(1988). An historical account of the development of the lambda calculus is given in Rosser (1984). Davis(1989) contains a very nice account of the relation between the deductive and computation aspects of lambdacalculus. Peyton-Jones (1987) is an excellent reference on functional programming languages; Chapters 8and 9 (written by P. Hancock) provide an introduction to type checking. An excellent and detailed tutorialon how to implement functional programming languages is provided by Peyton-Jones and Lester (1992).References on lambda calculus and functional programming are given in the concluding section (References)of these notes.THE SYNTAX OF LAMBDA NOTATIONLambda notation is a useful technique for writing function denotations and expressing their application toactual arguments. Two syntaxes are commonly used in practice: an unambiguous one, sometimes usedby mathematicians, and an ambiguous one, used both in mathematics and computer science. The syntaxde�nitions below are written as context-free grammars; they generate the syntax domain Term of lambdaterms, simply called \terms" for brevity. Two primitive syntax domains are assumed: Var, an in�nite set ofvariables, andConst, a (not necessarily in�nite) set of constants. In the following grammar, variable 2 Var,constant 2 Const, and terms are generated by the nonterminal term 2 Term.Syntax of Lambda TermsU1 term ::= constantU2 term ::= variableU3 term ::= (term term)U4 term ::= � variable : termA term constructed by rule U3 is called a combination, and is intended to represent function application. A1

combination's left term is called its operator, and the right term is called its operand. A term constructedby rule U4 is called an abstraction, and is intended to represent a function denotation. An abstraction'svariable is called its bound variable (the function's formal parameter), and the term is called its body. Aterm is a value if and only if it is not a combination.Function application is often written fx instead of (f x) (or f(x)). Using juxtaposition to denote func-tion application introduces ambiguity that can be removed explicitly by using parentheses or implicitly byassuming that function application associates to the left: fgx means ((f g) x).The (multilayer) abstraction �x1: � � ��xn:M is often written as �x1 � � �xn:M . In�x binary function ap-plication is often informally used: x + y, x = 0, etc., where (for example) x + y informally represents((+ x) y).Two terms M and N are identical, written M � N , if they are, symbol for symbol, exactly the same.Subterms and ContextsAny term is a subterm of itself. In addition, a combination's operator and operand are each a subterm ofthat combination, and an abstraction's body is a subterm of that abstraction. M is a proper subterm of Nif M is a subterm of N and M 6� N .A context, denoted C[], is a term from which one subterm has been deleted. The deleted subterm is denotedby a pair [] of brackets. An example context is C[] � �x: (x []). The result of replacing the missing subtermof a context C[] with a term M is denoted C[M]. In the foregoing example, C[(x y)] � �x: (x (x y)).FREE AND BOUND VARIABLESEach term X has a set FV (X) of free variables and a set BV (X) of bound variables, de�ned by inductionon the structure of X as follows. Let M; N be terms, x 2 Var, and a 2 Const.X FV (X) BV (X)a ; ;x fx g ;(M N) FV (M) [FV (N) BV (M) [BV (N)�x:M FV (M) � fx g BV (M) [fx gA term X is closed i� FV (X) = ;; otherwise it is open. Closed terms are sometimes called combinators.PROPER SUBSTITUTIONLet V =< x1; x2; : : : > be an in�nite list of variables. Let X; M; N be terms, x; y 2 Var, and a 2 Const.Proper substitution of M for all free occurrences of x in X, written X[M=x], is de�ned inductively on thestructure of X as follows. X X[M=x]a ax My; y 6� x y(N1 N2) (N1[M=x] N2[M=x])�x:N �x:N�y:N; y 6� x �z:((N [z=y])[M=x])2

where z is the variable de�ned by:(1) if x 62 FV (N) or y 62 FV (M), then z � y;(2) otherwise, z is the �rst variable in V such that z 62 FV (N) [FV (M).Note that �z:((N [z=y])[M=x]) reduces to �y:(N [M=x]) when z � y. The restrictions in (1) and (2) preventfree variables of a term substituted into the body of an abstraction from becoming bound variables in thatabstraction. This would improperly change the semantics of the new abstraction, and would render thelambda calculus inconsistent (it could then be deduced in �N (see below) that M = N for any two terms Mand N). Such an improper change of free variables into bound variables is called capture (of free variables).A structure of the form [M=x], where M is a term and x a variable, is called a substitution. Note that asubstitution applied to a term is a unary su�x operator. Substitutions �i, unlike ordinary functions (whichare applied as pre�x operators), associate to the left, i.e., M�1�2 = (M�1)�2 and the members of a sequence�1�2 � � � �n of substitutions applied to a term are applied from left to right. Some authors de�ne substitutionas a unary pre�x operator, in which case substitutions associate to the right.THE CALL-BY-NAME (CBN) LAMBDA CALCULUS �NThe call-by-name (CBN) lambda calculus �N is given by a formal system (that looks like a formal logic, withaxioms and inference rules) that de�nes a conversion relation =N (sometimes written simply as = when noconfusion results) between terms. �N is a formal theory of CBN lambda equality. To avoid confusion withordinary equality, = is sometimes written cnv (denoting conversion), as in M cnv N .Let x; y 2 Var; let a; b 2 Const; let M; N; Z be terms.CBN Lambda Calculus �NI(�) �x:M = �y:(M [y=x]); provided that y 62 FV (M)I(�) (�x:M N) = M [N=x]I(�) (a b) = ConstApply(a; b); if de�nedII(1) M = MII(2) M = Z; Z = NM = NII(3) M = NN = MIII(1) (a) M = N(M Z) = (N Z) ; (b) M = N(ZM) = (Z N)III(2) M = N�x:M = �x:NThe rules in group I are the basic conversion rules of �N . Rule I(�), called �-conversion, speci�es therenaming, or change, of bound variables in a term. The restriction y 62 FV (M) prevents capture of freeoccurrences of y in M by �y. Rule I(�) speci�es contraction (also called �-reduction) and rule I(�) speci�esthe corresponding operation of constant contraction (also called �-reduction). The partial functionConstApply : Const�Const P! ClosedValues,where ClosedValues denotes the set of closed terms that are also values, speci�es how to reduce combina-tions in which both components are constants. The term (�x:M N) in rule I(�) is called a CBN �-redex3

(reducible expression). In rule I(�), the term (a b), when ConstApply(a; b) is de�ned, is called a CBN�-redex.The rules in group II assert that = is reexive, transitive, and symmetric, i.e., that = is an equivalencerelation. The rules in group III make = substitutive.�N can be viewed as a formal deductive system in which the well-formed formulas (WFFs) have the formM = N , where M and N are terms. �N ` M = N means that M = N is provable by the rules of �N , i.e.,M = N is a theorem of �N . �N `M >N means that M = N is provable by the rules of �N without usingII(3). It is important to keep in mind that the relation =, despite its notational similarity to equality, isreexive, transitive, and symmetric only because of rules II(1){(3) in �N . If these rules were absent, then =would not necessarily have these properties. Thus > is reexive and transitive, but not symmetric.Strictly speaking, = and > should be written =N and >N to denote that they are associated with �N , andthis will be done when necessary to avoid confusion with other, similar, relations de�ned by other, similar,formal systems.> is called a reduction relation; it expresses the reduction, or simpli�cation, of a term into a usually simpleror shorter term. Although rules I(�){I(�) all contribute to >, rules I(�) and I(�) are the ones that actuallyhave the potential for term simpli�cation, since I(�) only renames a term's bound variables, which preservesthe structure of that term. When M >N , we say that M is reduced to N .THE CALL-BY-VALUE (CBV) LAMBDA CALCULUS �VThe call-by-value (CBV) lambda calculus �V is given by a formal system that de�nes a conversion relation=V and a reduction relation >V . �V is a theory of CBV lambda equality. �V is the same as �N except fora restriction on rule I(�): CBV Lambda Calculus �VI(�) (�x:M N) = M [N=x]; provided that N is a valueRules I(�), I(�), II(1){II(3), and III(1){III(2)are the same as those in �N :Recall that a value is a term that is not a combination. �V `M = N means that M = N is provable by therules of �V . �V `M >N means that M = N is provable by the rules of �V without using II(3).SUBTERM REPLACEMENTThe relations M = N and M > N (converting or reducing a term to another term) in �N and �V areestablished by formal deductions in those systems. Establishing these formal deductions can be a lengthyand tedious process. It would be easier to convert (reduce) a term to another term by simply replacing oneof its subterms that is also a redex by another subterm to which that redex converts (reduces). Indeed, all ofthe conversion (reduction) is done by the axioms in group I. The rules in groups II and III simply distributethese conversions (reductions) over the components of combinations and the bodies of abstractions.This conversion (reduction) strategy is justi�ed by a derived rule of �N (and �V) called subterm replacement(also called the substitution rule), stated using the notion of contexts:Subterm ReplacementIV M = NC[M] = C[N]; for all contexts C[]4

NORMAL FORMSA term is in CBN (CBV) normal form (NF) if none of its subterms is a CBN (CBV) �- or �- redex. A termis said to have a NF if it can be reduced to a NF.It is important to note that not every term has a NF. For example, (�x:(x x) �x:(x x)) does not have a NFin �N or �V because it is both a CBN and CBV �-redex that cannot be converted or reduced to anythingbut itself in �N and �V .Unfortunately, even if a term has a NF, it may not be possible to determine it: there exists no algorithm todetermine whether or not an arbitrary term has a NF.THE CHURCH-ROSSER THEOREMUsually one term can be reduced, or simpli�ed, to another via > in a variety of ways. This is because a termmay contain several redexes, any one of which can be chosen to be contracted next by an application of I(�)or I(�). It is natural, and important, to ask whether the choice of redex on which to carry out an individualreduction makes any \di�erence" in the outcome of a sequence of individual reductions applied to reduceone term to another. The Church-Rosser Theorem (CRT) and a Corollary say that di�erent sequences ofchoices yield results that are \essentially the same" in a precise sense de�ned below. The CRT applies toboth �N and �V . In the statement of the theorem, � represents either �N or �V throughout.The Church-Rosser TheoremLet L, M1, M2, and N be terms. If � ` L >M1 and � ` L >M2, then there exists N such that � `M1 >Nand � `M2 > N . 2Terms M and N are alphabetically equivalent, written M �� N , if � `M = N without using rules I(�){(�),where � represents either �N or �V . In other words, two terms are alphabetically equivalent if they di�eronly in the names of their bound variables. Alphabetic equivalence is clearly an equivalence relation.Corollary (to the Church-Rosser Theorem)If � ` L >M1 and � ` L >M2 and M1 and M2 are both in NF, then M1 �� M2. 2The above corollary states that if a term can be reduced to di�erent NFs, then these NFs are alphabeticallyequivalent, i.e., they are the same except for the names of their bound variables. The CRT and its Corollarystate that if a term has a NF, then that NF is unique (up to the names of its bound variables).In �V , the restriction that N be a value in I(�) is essential to ensure that the CRT holds for �V . If, asmight be natural to suggest, this restriction were changed so that N is required to be a CBV NF instead ofa value, then the CRT fails for such a modi�ed version of �V . An example of such a failure is provided byL = (�x:(�y:z (x �x:(x x))) �x:(x x))M1 = zM2 = (�y:z (�x:(x x) �x:(x x)))Thus �V ` L >M1 and �V ` L >M2, but since M1 is in NF and M2 cannot be further reduced to anythingbut itself, there exists no term N such that �V `M1 >N and �V `M2 >N . In the original version of �V ,�V ` L >M2, but �V 6` L >M1 because (x �x:(x x)) is not a value.STANDARD REDUCTION STRATEGIESThe CRT and its corollary state that if a term can be reduced to NF in two di�erent ways, then the (possiblydi�erent) NFs obtained are alphabetically equivalent, and so the particular order of reduction chosen doesn'tmake any essential di�erence in the resulting NF. There is, however, a \standard" way of choosing a nextredex to contract that ensures the reduction of a term to NF, provided that the term actually has a NF.In what follows, the unambiguous syntax of �-terms is assumed. A redex that is a subterm of a term is5

the leftmost redex of that term if the leftmost symbol of that redex is located to the left of the leftmostsymbol of any other redex that is a subterm of the term. A normal order reduction sequence is a sequence ofterms in which the last element is a NF of the �rst element, and in which each element is obtained from theimmediately previous element by contracting the previous element's leftmost �- or �-redex. A normal orderreduction strategy (NORS) is one whereby a term is reduced to NF via a normal order reduction sequence.The Standardization TheoremIf a term has a NF, then that NF can always be obtained (to within alphabetic equivalence) by reducing theterm via a NORS. 2The Standardization Theorem applies to both �N and �V . In �N , a normal order reduction strategy is oftencalled a leftmost outermost reduction strategy. The word \outermost" is redundant if the unambiguoussyntax of terms is assumed: the leftmost redex is also an outermost one. The NORS is often called the\call-by-name" reduction strategy. Still within �N , there is another reduction strategy, the applicative orderreduction strategy (AORS), in which the leftmost innermost �- or �-redex is contracted. The AORS is oftencalled the \call-by-value" reduction strategy (not to be confused with �V) because it forces the operand ofa �-redex to be reduced to NF before that �-redex can be contracted.If a term has a NF then the NORS will always obtain it (to within alphabetic equivalence), whereas theAORS may not. For example, let � � �x: (x x). Then(NORS) : (�y:x (� �)) > x [converges to NF](AORS) : (�y:x (� �)) > (�y:x (� �)) > � � � [diverges]�-REDUCTIONBecause it provides a reasonable and desirable way to help simplify terms, an additional rule, called �-reduction, is often included in �N : �-ReductionI(�) �x:(M x) = M; provided that x 62 FV (M):Rule I(�) is a cancellation rule that permits simpli�cations such as �x:f(x) = f . The restriction x 62 FV (M)is necessary; its omission would render �N inconsistent. If x were free in M , then reducing �x:(M x) to Mwould be intuitively (and semantically) invalid because x is not free in �x:(M x) whereas x is left \oating"free in M after the reduction.Rule I(�) combines with rule III(2) to yield the Extensionality Principle:Extensionality PrincipleV (M x) = (N x)M = N ; provided that x 62 FV (M) [FV (N):The Extensionality Principle expresses the lambda calculus form of the notion of extensional equality offunctions: f = g i� (8x)(f(x) = g(x)).Unfortunately, if I(�) is included in �V , the CRT fails for �V , as inL = (�x:y �x:((�x:(x x) �x:(x x)) x))M1 = yM2 = (�x:y (�x:(x x) �x:(x x))) 6

L >M1 via I(�) whereas L >M2 via I(�); this latter reduction could not be made without I(�). The problemwith including I(�) in �V is that this rule can convert a term that is a value into one that is no longer avalue. This occurred in L >M2.THE CONSISTENCY OF �N AND �VThe CRT plays a vital role in establishing the consistency of �N and �V as deductive systems. �N (�V)is consistent if there exists a WFF M = N such that �N 6` M = N (�V 6` M = N), i.e., M = N is not atheorem of �N (�V). Equivalently, �N (�V) is inconsistent if �N ` M = N (�V ` M = N) for all WFFsM = N , i.e., M = N is a theorem of �N (�V) for any terms M and N .Theorem: �N and �V are consistent.Proof. Suppose that �N were not consistent. Then for all terms M and N , �N ` M = N . In particular,�N ` �x:�y:x = �x:�y:y. But both �x:�y:x and �x:�y:y are in NF and �x:�y:x 6�� �x:�y:y, whichcontradicts the Corollary to the CRT. The proof is similar for �V . 2COMPUTATION VERSUS DEDUCTION IN �N AND �VThe reduction of a term to NF can be viewed as a \computation" that terminates in the sense that theterm cannot be further simpli�ed by applications of rules I(�){(�) (and I(�) if present in �N). In this sense,it seems reasonable to regard the attempted reduction of a term that does not have a NF as leading to a\nonterminating" computation, and therefore in this computational sense, such a term can be regarded asrepresenting \unde�ned". Continuing along this line, it seems reasonable to regard every term that doesnot have a NF as representing \unde�ned" and thus all terms not having a NF are identi�ed (declared to beinterconvertible, i.e., related by =) in �N (and �V). This can be accomplished by adding axioms M = Nto �N (�V) when M and N do not have a CBN (CBV) NF. Let �0N (�0V) denote �N (�V) augmented withthese axioms. Unfortunately, �0N and �0V are inconsistent.Theorem: �0N is inconsistent.Proof [Davis (1989)]. Let tt � �x:�y:x and � � �x:�y:y. tt and � are intended to be representations of trueand false, respectively, in �0N . Let U be any term that does not have a NF and let Q � �x: ((x tt) U) andR � �x: ((x �) U). First of all, note that neither Q nor R has a NF because U doesn't. Thus �0N ` Q = R.But (Q tt) > ((tt tt) U) > (�y:tt U) > tt(R tt) > ((tt �) U) > (�y:� U) > �and thus �0N ` (Q tt) = tt and �0N ` (R tt) = � . Since �0N ` Q = R, �0N ` (Q tt) = (R tt) by subtermreplacement, and thus �0N ` tt = � by transitivity of =. Now let M and N be any two terms. It is easilyshown that �0N ` ((tt M) N) = M and �0N ` ((� M) N) = N and thus since �0N ` tt = � , �0N ` M = Nby subterm replacement and the transitivity of =. Thus �0N is inconsistent. 2The inconsistency of �0V is proved by the same argument.There exist, however, \weaker" kinds of NF that do not introduce inconsistency in the above sense, calledhead NF (HNF) and weak head NF (WHNF) [Barendregt (1984), Field and Harrison (1988)]. In particular,a WHNF is the end result of reducing (computing upon) a term using machine models such as the SECDMachine [Field and Harrison (1988)] and practical implementations of functional programming languages[Peyton-Jones (1987)].Using our syntax, a term is in WHNF if and only if it is a value (a term that is not a combination).Standard reductions of terms to WHNF (when possible) can be de�ned in terms of CBN and CBV leftreduction relations !N ;!V � Term � Term, that are the least relations between terms satisfying thefollowing conditions. 7

CBN and CBV Left Reduction Relations1N (�x:M N)!N M [N=x]2N (a b)!N ConstApply(a; b) when de�ned3N (M N)!N (M 0 N) ifM !N M 04N (M N)!N (M N 0) if (M = a or M = x) and N !N N 01V (�x:M N)!V M [N=x] when N is a value2V (a b)!V ConstApply(a; b) when de�ned3V (M N)!V (M 0 N) ifM !V M 04V (M N)!V (M N 0) ifM is a value and N !V N 0Informally, if M !N N (M !V N), then N is obtained from M by contracting the leftmost CBN (CBV)redex of M that is not contained in the body of an abstraction.Theorem [Plotkin (1975)]: For any term M and value N , �N ` M > N i� M �!N N . The same resultholds when �N and !N are replaced by �V and !V . 2Rather that using �N and �V , closed terms can be reduced to WHNF (i.e., values) by corresponding (partial)evaluation functions evalN ; evalV : ClosedTerms P! ClosedValues, de�ned as follows.CBN and CBV Evaluation FunctionsevalN (a) = aevalN (�x:M) = �x:MevalN ((M N)) = evalN (M 0[N=x]) if evalN (M) = �x:M 0evalN ((M N)) = ConstApply(a; b) if evalN (M) = a and evalN (N) = band ConstApply(a; b) is de�nedevalV (a) = aevalV (�x:M) = �x:MevalV ((M N)) = evalV (M 0[N 0=x]) if evalV (M) = �x:M 0 and evalV (N) = N 0evalV ((M N)) = ConstApply(a; b) if evalV (M) = a and evalV (N) = band ConstApply(a; b) is de�nedevalN (M) (evalV (M)) yields M 's CBN (CBV) WHNF (a value) if M has such a WHNF; otherwise,evalN (M) (evalV (M)) is unde�ned. The following theorem relates the above evaluation functions (com-putation) to the left reduction relations and hence to the �-calculi (deduction).Theorem [Plotkin (1975)]: For any closed term M and value N , evalN (M) = N i� there exists a term N 0such that M �!N N 0 and N 0 �� N . The same result holds when evalN and !N are replaced by evalV and!V . 2CONDITIONAL AND RECURSION IN THE LAMBDA CALCULUSIn this section, it is assumed that the evaluation functions evalN (for �N) evalV (for �V) are used to computea (closed) term to a value, if possible. Alternatively, the left reduction relations !N and !V could be usedto reduce a term to a value. 8

ConditionalThe conditional (if-then-else) operator can be encoded in the lambda calculus by introducing constantsCOND, true, and false. Let ConstApplyN and ConstApplyV denote the constant application function for�N and �V , respectively. ThenConstApplyN (COND; true) = �x:�y:xConstApplyN (COND; false) = �x:�y:yConstApplyV (COND; true) = �x:�y: (x a0)ConstApplyV (COND; false) = �x:�y: (y a0)where a0 is an arbitrary constant. Let L, M , and N be terms. Then if L thenM else N is encoded in �Nand �V as follows:(�N) : (((COND L) M) N)(�V) : (((COND L) �z:M) �z:N) where z 62 FV (M) [FV (N)It is assumed that L can be reduced to one of the constants true or false. The \encapsulation" of M andN in �z:M and �z:N constructs a CBV conditional operator that prevents M and N from being evaluateduntil one of them has been selected.RecursionLet rec x = M denote the recursive de�nition of x. Normally x 2 FV (M), but this is not necessary; ifx 62 FV (M), then no recursion is being de�ned. De�ne CBN and CBV �xed point combinators Y and Z:(�N) : Y � �f:(�g:(f (g g)) �g:(f (g g)))(�V) : Z � �f:(�g:(f �h:((g g) h)) �g:(f �h:((g g) h)))rec x =M is encoded in �N and �V as follows:(�N) : (Y �x:M)(�V) : (Z �x:M)

9

REFERENCESLambda CalculusBarendregt, H. P., \The Type Free Lambda Calculus", in Barwise, J. (Ed.), Handbook of MathematicalLogic, North-Holland Publishing Co., Amsterdam, 1977, pp. 1091-1132.Barendregt, H. P., The Lambda Calculus: Its Syntax and Semantics, 2nd Edition, North-Holland PublishingCo., Amsterdam, 1984.Davis, R. E., Truth, Deduction, and Computation, Computer Science Press, New York, 1989.Hindley, J. R. and Seldin, J. P., Introduction to Combinators and �-Calculus, Cambridge University Press,Cambridge, U. K., 1986.Plotkin, G. D., \Call-by-Name, Call-by-Value, and the �-Calculus", Theoretical Computer Science 1: 125-159, 1975.Revesz, G., Lambda-Calculus, Combinators, and Functional Programming, Cambridge University Press,Cambridge, U. K., 1988.Rosser, J. B., \Highlights of the History of the Lambda-Calculus", Annals of the History of Computing 6:337-349, Oct. 1984.Functional Programming LanguagesField, A. J. and Harrison, P. G., Functional Programming, Addison-Wesley, Reading, Mass., 1988.Henson, M. C., Elements of Functional Languages, Blackwell Scienti�c Publications, Oxford, U. K., 1987.Peyton-Jones, S. L., The Implementation of Functional Programming Languages, Prentice Hall International,Englewood Cli�s, N. J., 1987.Peyton-Jones, S. L. and Lester, D. R., Implementing Functional Languages: A Tutorial, Prentice HallInternational, Englewood Cli�s, N. J., 1992.

10

