UNIVERSITY OF CALIFORNIA, LOS ANGELES

Computer Science Department

NOTES on LAMBDA CALCULUS

David F. Martin
Fall 1992

INTRODUCTION

Lambda calculus, invented by Alonzo Church in the 1930s, is a general but syntactically simple model
of computation. It was conceived as part of a system of higher-order logic and function theory. The first
undecidability results were for lambda calculus; similar results for Turing machines came later. In addition to
its purely mathematical applications, lambda calculus is important in the study of computer programming
languages. It has served as a basic linguistic prototype from which LISP, ALGOL-like languages, and
functional programming languages have been derived. It also serves as a basic metalanguage for expressing
the denotational semantics of programming languages.

These notes are a brief introduction to the type-free lambda calculus. Two versions of the type-free lambda
calculus are presented: the call-by-name (CBN) and the call-by-value (CBV) calculi. The CBN calculus was
the original version of the lambda calculus; the CBV calculus is a related derivative motivated by computer
science applications. These lambda calculi share the same syntax, and the CBV calculus was formulated to
have the desirable properties of the CBN calculus, the most notable of these being the satisfaction of the
Church-Rosser Theorem.

Much of the material in these notes was gleaned from Plotkin (1975). Encylopedic references are Barendregt
(1984) and Hindley and Seldin (1986). An introduction to the type-free lambda calculus is Barendregdt
(1977). Introductions to typed lambda calculus can be found in Hindley and Seldin (1986) and Revesz
(1988). An historical account of the development of the lambda calculus is given in Rosser (1984). Davis
(1989) contains a very nice account of the relation between the deductive and computation aspects of lambda
calculus. Peyton-Jones (1987) is an excellent reference on functional programming languages; Chapters 8
and 9 (written by P. Hancock) provide an introduction to type checking. An excellent and detailed tutorial
on how to implement functional programming languages is provided by Peyton-Jones and Lester (1992).
References on lambda calculus and functional programming are given in the concluding section (References)
of these notes.

THE SYNTAX OF LAMBDA NOTATION

Lambda notation is a useful technique for writing function denotations and expressing their application to
actual arguments. Two syntaxes are commonly used in practice: an unambiguous one, sometimes used
by mathematicians, and an ambiguous one, used both in mathematics and computer science. The syntax
definitions below are written as context-free grammars; they generate the syntax domain Term of lambda
terms, simply called “terms” for brevity. Two primitive syntax domains are assumed: Var, an infinite set of
variables, and Const, a (not necessarily infinite) set of constants. In the following grammar, variable € Var,
constant € Const, and terms are generated by the nonterminal term € Term.

Syntax of Lambda Terms

Ul | term ::= constant

U2 | term ::= variable

U3 | term == (term term)
U4 | term ::= A variable . term

A term constructed by rule U3 is called a combination, and is intended to represent function application. A

combination’s left term is called its operator, and the right term is called its operand. A term constructed
by rule U4 1s called an abstraction, and is intended to represent a function denotation. An abstraction’s
variable is called its bound variable (the function’s formal parameter), and the term is called its body. A
term is a value if and only if it is not a combination.

Function application is often written fz instead of (f) (or f(z)). Using juxtaposition to denote func-
tion application introduces ambiguity that can be removed explicitly by using parentheses or implicitly by
assuming that function application associates to the left: fgx means ((f g) z).

The (multilayer) abstraction Azj.---Az,. M is often written as Azy---2,. M. Infix binary function ap-
plication is often informally used: # + y, # = 0, etc., where (for example) # + y informally represents

((+2) y).
Two terms M and N are identical, written M = N, if they are, symbol for symbol, ezactly the same.

Subterms and Contexts

Any term is a subterm of itself. In addition, a combination’s operator and operand are each a subterm of
that combination, and an abstraction’s body is a subterm of that abstraction. M is a proper subterm of N
if M is a subterm of N and M # N.

A contert, denoted C[], is a term from which one subterm has been deleted. The deleted subterm is denoted
by a pair [] of brackets. An example context is C[] = Az. (z []). The result of replacing the missing subterm
of a context C[] with a term M is denoted C[M]. In the foregoing example, C[(z y)] = Az. (z (= y)).

FREE AND BOUND VARIABLES

Fach term X has a set F'V(X) of free variables and a set BV (X) of bound variables, defined by induction
on the structure of X as follows. Let M, N be terms, # € Var, and a € Const.

X FV(X) BV(X)

a 0 0

x {z} 0
(M N) || FV(M)U FV(N) | BV(M)U BV(N)
Az M FV(M)—{z} BV(M)yu{z}

A term X is closed iff FV(X) = 0; otherwise it is open. Closed terms are sometimes called combinators.
PROPER SUBSTITUTION
Let V = < xy, x5, ... > be an infinite list of variables. Let X, M, N be terms, x, y € Var, and a € Const.

Proper substitution of M for all free occurrences of @ in X, written X[M/z], is defined inductively on the
structure of X as follows.

X X[M/z]
x M
Yy, yE£ Y
(N1 Na) || (N1[M/z] N2[M/x])
Ax. N Ax. N
AyN, y £ || Az((N[z/y]))[M/z])

where z is the variable defined by:
(Yifeg FV(N)ory& FV(M), then z = y;
(2) otherwise, z is the first variable in V such that z ¢ FV(N)U FV(M).

Note that Az.((N[z/y])[M/x]) reduces to Ay.(N[M/z]) when z = y. The restrictions in (1) and (2) prevent
free variables of a term substituted into the body of an abstraction from becoming bound variables in that
abstraction. This would improperly change the semantics of the new abstraction, and would render the
lambda calculus inconsistent (it could then be deduced in Ay (see below) that M = N for any two terms M
and N). Such an improper change of free variables into bound variables is called capture (of free variables).

A structure of the form [M/z], where M is a term and & a variable, is called a substitution. Note that a
substitution applied to a term is a unary suffiz operator. Substitutions 6;, unlike ordinary functions (which
are applied as prefiz operators), associate to the left, i.e., M010, = (M61)0 and the members of a sequence
6165 --- 8, of substitutions applied to a term are applied from left to right. Some authors define substitution
as a unary prefiz operator, in which case substitutions associate to the right.

THE CALL-BY-NAME (CBN) LAMBDA CALCULUS My

The call-by-name (CBN) lambda calculus Ay is given by a formal system (that looks like a formal logic, with
axioms and inference rules) that defines a conversion relation =n (sometimes written simply as = when no
confusion results) between terms. Ay is a formal theory of CBN lambda equality. To avoid confusion with
ordinary equality, = is sometimes written cnv (denoting conversion), as in M cnv N.

Let x, y € Var; let a, b € Const; let M, N, Z be terms.

CBN Lambda Calculus Ay

(o) | Ae.M = Ay.(MJy/x]), provided that y & FV (M)
I(3) | (Az.M N)= M[N/z]
1(6) (a b) = Const Apply(a,b), if defined

() | M=M

e |M=ZZ=N

nE) | 4=N

11I(1) | (a) (M%zé\]]\fZ)’ (b) (Z]\%zéVZN)
HI(Q) /\x.% z /]\\;‘.N

The rules in group I are the basic conversion rules of Ay. Rule I(«), called a-conversion, specifies the
renaming, or change, of bound variables in a term. The restriction y ¢ FV(M) prevents capture of free
occurrences of y in M by Ay. Rule I(5) specifies contraction (also called g-reduction) and rule 1(8) specifies
the corresponding operation of constant contraction (also called §-reduction). The partial function

Const Apply : Const x Const £ ClosedValues,

where ClosedValues denotes the set of closed terms that are also values, specifies how to reduce combina-
tions in which both components are constants. The term (Az.M N) in rule I(3) is called a CBN §-redex

(reducible expression). In rule I(é), the term (a b), when ConstApply(a,b) is defined, is called a CBN
o-redezx.

The rules in group II assert that = is reflexive, transitive, and symmetric, i.e., that = is an equivalence
relation. The rules in group Il make = substitutive.

An can be viewed as a formal deductive system in which the well-formed formulas (WFFs) have the form
M = N, where M and N are terms. Ay = M = N means that M = N 1s provable by the rules of Ay, 1.e.,
M = N is a theorem of Ayy. Ay = M > N means that M = N is provable by the rules of Ay without using
I7(3). Tt is important to keep in mind that the relation =, despite its notational similarity to equality, is
reflexive, transitive, and symmetric only because of rules IT(1)-(3) in An. If these rules were absent, then =
would not necessarily have these properties. Thus > is reflexive and transitive, but not symmetric.

Strictly speaking, = and > should be written =p and >y to denote that they are associated with Ay, and
this will be done when necessary to avoid confusion with other, similar, relations defined by other, similar,
formal systems.

D> is called a reduction relation; it expresses the reduction, or simplification, of a term into a usually simpler
or shorter term. Although rules I(«)-1(é) all contribute to >, rules I(3) and I(§) are the ones that actually
have the potential for term simplification, since I(«) only renames a term’s bound variables, which preserves
the structure of that term. When M > N, we say that M is reduced to N.

THE CALL-BY-VALUE (CBV) LAMBDA CALCULUS)y

The call-by-value (CBV) lambda calculus Ay is given by a formal system that defines a conversion relation
=y and a reduction relation B>y. Ay 1s a theory of CBV lambda equality. Ay is the same as Ay except for
a restriction on rule 1(3):

CBYV Lambda Calculus Ay

I(8) | (Ae.M N) = M[N/x], provided that N is a value

Rules I(a), 1(8), 1I(1)-11(3), and I11(1)-1I1(2)

are the same as those in Ay.

Recall that a value is a term that is not a combination. Ay = M = N means that M = N is provable by the
rules of Ayv. Ay B M 1> N means that M = N is provable by the rules of Ay without using II(3).

SUBTERM REPLACEMENT

The relations M = N and M > N (converting or reducing a term to another term) in Ay and Ay are
established by formal deductions in those systems. FEstablishing these formal deductions can be a lengthy
and tedious process. It would be easier to convert (reduce) a term to another term by simply replacing one
of its subterms that is also a redex by another subterm to which that redex converts (reduces). Indeed, all of
the conversion (reduction) is done by the axioms in group I. The rules in groups IT and IIT simply distribute
these conversions (reductions) over the components of combinations and the bodies of abstractions.

This conversion (reduction) strategy is justified by a derived rule of Ay (and Ay) called subterm replacement
(also called the substitution rule), stated using the notion of contexts:

Subterm Replacement

v %, for all contexts C[]

NORMAL FORMS

A term is in CBN (CBV) normal form (NF) if none of its subterms is a CBN (CBV) - or - redex. A term
is said to have ¢ NF if it can be reduced to a NF.

It is important to note that not every term has a NF. For example, (Ax.(z) Az.(z #)) does not have a NF
in Ay or Ay because it is both a CBN and CBV f-redex that cannot be converted or reduced to anything
but itself in Ay and Av.

Unfortunately, even if a term has a NF, it may not be possible to determine it: there exists no algorithm to
determine whether or not an arbitrary term has a NF.

THE CHURCH-ROSSER THEOREM

Usually one term can be reduced, or simplified, to another via [> in a variety of ways. This is because a term
may contain several redexes, any one of which can be chosen to be contracted next by an application of I(5)
or I(é). Tt is natural, and important, to ask whether the choice of redex on which to carry out an individual
reduction makes any “difference” in the outcome of a sequence of individual reductions applied to reduce
one term to another. The Church-Rosser Theorem (CRT) and a Corollary say that different sequences of
choices yield results that are “essentially the same” in a precise sense defined below. The CRT applies to
both Axy and Ay . In the statement of the theorem, A represents either Ay or Ay throughout.

The Church-Rosser Theorem

Let L, My, My, and N be terms. If A\F L > M, and A F L > My, then there exists N such that AF M; >N
and AF M, > N. O

Terms M and N are alphabetically equivalent, written M =, N, if A+ M = N without using rules I(3)-(6),
where A represents either Ay or Ay. In other words, two terms are alphabetically equivalent if they differ
only in the names of their bound variables. Alphabetic equivalence 1s clearly an equivalence relation.

Corollary (to the Church-Rosser Theorem)
IfAFL > M, and A L > Ms and My and M5 are both in NF, then M; =, M>. O

The above corollary states that if a term can be reduced to different NFs, then these NFs are alphabetically
equivalent, i.e., they are the same except for the names of their bound variables. The CRT and its Corollary
state that if a term has a NF, then that NF is unigue (up to the names of its bound variables).

In Ay, the restriction that N be a walue in I(3) is essential to ensure that the CRT holds for Ay. If| as
might be natural to suggest, this restriction were changed so that N is required to be a C'BV NF instead of
a value, then the CRT fails for such a modified version of Ay. An example of such a failure is provided by

@:_(/\x.(/\y.z (x Az.(z 2))) Azx.(z z))
Mz = (Ay.z (Az.(z) Ae.(x 2)))

Thus Ay F L > M7 and Ay = L > Ms, but since M; is in NF and M5 cannot be further reduced to anything
but itself, there exists no term N such that Ay - M7 > N and Ay F M5 > N. In the original version of Ay,
Av B L > M, but Av I/ L > My because (z Az.(z x)) is not a value.

STANDARD REDUCTION STRATEGIES

The CRT and its corollary state that if a term can be reduced to NF in two different ways, then the (possibly
different) NFs obtained are alphabetically equivalent, and so the particular order of reduction chosen doesn’t
make any essential difference in the resulting NF. There 1s, however, a “standard” way of choosing a next
redex to contract that ensures the reduction of a term to NF, provided that the term actually has a NF.

In what follows, the unambiguous syntax of A-terms is assumed. A redex that is a subterm of a term 1is

the leftmost redex of that term if the leftmost symbol of that redex is located to the left of the leftmost
symbol of any other redex that is a subterm of the term. A normal order reduction sequence is a sequence of
terms in which the last element is a NF of the first element, and in which each element is obtained from the
immediately previous element by contracting the previous element’s leftmost G- or é-redex. A normal order
reduction strategy (NORS) is one whereby a term is reduced to NF via a normal order reduction sequence.

The Standardization Theorem

If a term has a NF, then that NF can always be obtained (to within alphabetic equivalence) by reducing the
term via a NORS. O

The Standardization Theorem applies to both Ay and Ay. In Ay, a normal order reduction strategy is often
called a leftmost outermost reduction strategy. The word “outermost” is redundant if the unambiguous
syntax of terms is assumed: the leftmost redex is also an outermost one. The NORS is often called the
“call-by-name” reduction strategy. Still within Ay, there is another reduction strategy, the applicative order
reduction strategy (AORS), in which the leftmost innermost 3- or é-redex is contracted. The AORS is often
called the “call-by-value” reduction strategy (not to be confused with Ay) because it forces the operand of
a [-redex to be reduced to NF before that S-redex can be contracted.

If a term has a NF then the NORS will always obtain it (to within alphabetic equivalence), whereas the
AORS may not. For example, let A = Az.(x). Then

(NORS) : (Ay.x (A A)) 1> x [converges to NF]
(AORS) : (Ay.z (A A)) > (Ay.x (A A)) B> - - [diverges]

n-REDUCTION

Because it provides a reasonable and desirable way to help simplify terms, an additional rule, called 5-
reduction, is often included in Ay:

n-Reduction

I(n) | Ax.(M x) = M, provided that © ¢ FV(M).

Rule I(n) is a cancellation rule that permits simplifications such as Az. f(z) = f. The restriction z ¢ FV(M)
is necessary; its omission would render Ay inconsistent. If & were free in M, then reducing Az.(M z) to M
would be intuitively (and semantically) invalid because # is not free in Az.(M z) whereas # is left “floating”
free in M after the reduction.

Rule I(n) combines with rule IT1(2) to yield the Extensionality Principle:

Extensionality Principle

Ma)=(Na)
V| =y provided that z ¢ FV(M)U FV(N).

The Extensionality Principle expresses the lambda calculus form of the notion of extensional equality of

functions: f = ¢ iff (V2)(f(z) = g(»)).
Unfortunately, if I(5) is included in Ay, the CRT fails for Ay, as in

L= Az.y e.((Az.(z2) de.(z) ©))
M=y
Mz = (Ae.y (Az.(x 2) Ae.(z 2)))

L > My via I(5) whereas L 1> M» via I(n); this latter reduction could not be made without I(n). The problem
with including I(n) in Ay is that this rule can convert a term that is a value into one that is no longer a
value. This occurred in L > M.

THE CONSISTENCY OF Ay AND My

The CRT plays a vital role in establishing the consistency of Ay and Ay as deductive systems. Ay (Avy)
is consistent if there exists a WFF M = N such that Ay Y M = N (Avy /¥ M = N), i.e., M = N is not a
theorem of Ay (Av). Equivalently, Ax (Av) is inconsistent if Ay W M = N (Ay F M = N) for all WFFs
M = N,ie, M = N is a theorem of Ay (Ay) for any terms M and N.

Theorem: Ay and Ay are consistent.

Proof. Suppose that Ay were not consistent. Then for all terms M and N, Ay = M = N. In particular,
An B Az Ay.e = Az Ady.y. But both Az.Ay.z and Az.Ay.y are in NF and Az.Ay.z #, Az.Ay.y, which
contradicts the Corollary to the CRT. The proof is similar for Ay. O

COMPUTATION VERSUS DEDUCTION IN Ay AND Ay

The reduction of a term to NF can be viewed as a “computation” that terminates in the sense that the
term cannot be further simplified by applications of rules I(5)-(é) (and I(n) if present in Ay). In this sense,
it seems reasonable to regard the attempted reduction of a term that does not have a NF as leading to a
“nonterminating” computation, and therefore in this computational sense, such a term can be regarded as
representing “undefined”. Continuing along this line, it seems reasonable to regard every term that does
not have a NF as representing “undefined” and thus all terms not having a NF are identified (declared to be
interconvertible, i.e., related by =) in Ay (and Ay). This can be accomplished by adding azioms M = N
to Ay (Av) when M and N do not have a CBN (CBV) NF. Let Ay (A{,) denote Ay (Ay) augmented with
these axioms. Unfortunately, Ay and A}, are inconsistent.

Theorem:)y is inconsistent.

Proof [Davis (1989)]. Let tt = Ax.Ay.x and ff = Az Ay.y. tt and ff' are intended to be representations of {rue
and false, respectively, in My. Let U be any term that does not have a NF and let @ = Az.((x tt) U) and
R = Azx.((x ff) U). First of all, note that neither @ nor R has a NF because U doesn’t. Thus Xy - Q = R.
But

(Q tt) > ((tt tt) U) > (Ay.tt U) > tt
(Rtt) > (et Y U) > (A\yH U) > ff

and thus Xy F (@ tt) = tt and My F (R tt) = ff. Since My F @ = R, Xy F (Q tt) = (R tt) by subterm
replacement, and thus Ay, F tt = ff by transitivity of =. Now let M and N be any two terms. It is easily
shown that Ay F (¢t M) N) = M and My - ((ff M) N) = N and thus since My Ftt =, My - M =N

by subterm replacement and the transitivity of =. Thus A is inconsistent. O
The inconsistency of A{ is proved by the same argument.

There exist, however, “weaker” kinds of NF that do not introduce inconsistency in the above sense, called
head NF (HNF) and weak head NF (WHNTF) [Barendregt (1984), Field and Harrison (1988)]. In particular,
a WHNTF is the end result of reducing (computing upon) a term using machine models such as the SECD
Machine [Field and Harrison (1988)] and practical implementations of functional programming languages

[Peyton-Jones (1987)].

Using our syntax, a term is in WHNF if and only if it is a value (a term that is not a combination).
Standard reductions of terms to WHNF (when possible) can be defined in terms of CBN and CBV left
reduction relations —pn,—y C Term x Term, that are the least relations between terms satisfying the
following conditions.

CBN and CBV Left Reduction Relations

IN | (Az.M N) —n M[N/z]

2N | (a b) —n ConstApply(a,b) when defined

SN | (M N) =y (M’ N) if M —y M’

AN | (M N) N(MN’) if (M =aor M =x)and N —n N’

1V | (Ax.M N) —y M[N/z] when N is a value

2V | (a b) —v ConstApply(a,b) when defined

3V | (M N)—y (M'N) if M —v M’

4V | (M N) V(MN’) if M is a value and N —y N’/

Informally, if M —n N (M —y N), then N is obtained from M by contracting the leftmost CBN (CBV)
redex of M that is not contained in the body of an abstraction.

Theorem [Plotkin (1975)]: For any term M and value N, Ay - M > N iff M X N. The same result
holds when Anx and —u are replaced by Ay and —y. O

Rather that using Ay and Ay, closed terms can be reduced to WHNTF (i.e., values) by corresponding (partial)

evaluation functions evaly , evaly : Closed Terms Lt ClosedValues, defined as follows.

CBN and CBV Evaluation Functions

evaly(a) = a
evaly (Ae. M) = e M
evaly (M N)) = evaly (M'[N/z]) if evaly (M) = Ax. M’
evaly (M N)) = Const Apply(a,b) if evaly (M) = a and evaly (N) = b
and Const Apply(a, b) is defined
evaly (a) = a
evaly (Ax. M) = de.M
evaly (M N)) = evaly (M'[N'/x]) if evaly (M) = Ae. M’ and evaly (N) = N’
evaly (M N)) = Const Apply(a, b) if evaly (M) = a and evaly (N) = b

and Const Apply(a, b) is defined

evaly (M) (evaly (M)) yields M’s CBN (CBV) WHNF (a value) if M has such a WHNF; otherwise,
evaly (M) (evaly (M)) is undefined. The following theorem relates the above evaluation functions (com-
putation) to the left reduction relations and hence to the A-calculi (deduction).

Theorem [Plotkin (1975)]: For any closed term M and value N, evaly (M) = N iff there exists a term N’
such that M LN N’ and N’ =, N. The same result holds when evaly and —x are replaced by evaly and
—V. O

CONDITIONAL AND RECURSION IN THE LAMBDA CALCULUS

In this section, it is assumed that the evaluation functions evaly (for Ax) evaly (for Ay) are used to compute
a (closed) term to a value, if possible. Alternatively, the left reduction relations —n and —y could be used
to reduce a term to a value.

Conditional

The conditional (if-then-else) operator can be encoded in the lambda calculus by introducing constants
COND, true, and false. Let Const Applyn and Const Applyy denote the constant application function for
Ay and Ay, respectively. Then

Const Applyn (COND, true) = Ax.Ay.x
Const Applyn (COND, false) = Az. Ay.y
Const Applyy (COND, true) = Az.Ay. (¢ ag)
Const Applyy (COND, false) = Az Ay. (y ag)

where ag is an arbitrary constant. Let L, M, and N be terms. Then if L then M else N is encoded in Ay
and Ay as follows:

(An): (((COND L) M) N)
(Av): (((COND L) Az.M) Az.N) where z & FV(M)U FV(N)

It is assumed that L can be reduced to one of the constants true or false. The “encapsulation” of M and
N in Az.M and Az.N constructs a CBV conditional operator that prevents M and N from being evaluated
until one of them has been selected.

Recursion

Let rec © = M denote the recursive definition of . Normally € FV(M), but this is not necessary; if
z & FV (M), then no recursion is being defined. Define CBN and CBV fized point combinators Y and Z:

AN) Y =X (Ag.(f (99) Ag-(f (99)))
(Av) 2 Z = X.(Ag.(f Mh((g 9) h) Ag.(f Ah.((g 9) b))

rec x = M 1s encoded 1n Ay and Ay as follows:

(An) (Y Az M)
(Av) (7 Ax. M)

REFERENCES
Lambda Calculus

Barendregt, H. P., “The Type Free Lambda Calculus”, in Barwise, J. (Ed.), Handbook of Mathematical
Logic, North-Holland Publishing Co., Amsterdam, 1977, pp. 1091-1132.

Barendregt, H. P., The Lambda Calculus: Its Syntaz and Semantics, 2nd Edition, North-Holland Publishing
Co., Amsterdam, 1984.

Davis, R. E., Truth, Deduction, and Computation, Computer Science Press, New York, 1989.

Hindley, J. R. and Seldin, J. P., Introduction to Combinators and A-Calculus, Cambridge University Press,
Cambridge, U. K., 1986.

Plotkin, G. D., “Call-by-Name, Call-by-Value, and the A-Calculus”, Theoretical Computer Science 1: 125-
159, 1975.

Revesz, G., Lambda-Calculus, Combinators, and Functional Programming, Cambridge University Press,

Cambridge, U. K., 1988.

Rosser, J. B., “Highlights of the History of the Lambda-Calculus”, Annals of the History of Computing 6:
337-349, Oct. 1984.

Functional Programming Languages
Field, A. J. and Harrison, P. G., Functional Programming, Addison-Wesley, Reading, Mass., 1988.
Henson, M. C., Flements of Functional Languages, Blackwell Scientific Publications, Oxford, U. K., 1987.

Peyton-Jones, S. L., The Implementation of Functional Programming Languages, Prentice Hall International,

Englewood Cliffs; N. J., 1987.

Peyton-Jones, S. L. and Lester, D. R., Implementing Functional Languages: A Tutorial, Prentice Hall
International, Englewood Cliffs, N. J., 1992.

10

